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Abstract

We obtain exact expressions for the density of states and the traversal and dwell times of particles travelling through one-
dimensional generalized Kronig—Penney models, consisting of periodic arrays of arbitrary sets of J-potentials. We reduce
the problem to the calculation of the properties of one unit cell. For the specific case of two d-functions per unit cell, we are
able to get explicit analytical expressions of the previous magnitudes.
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1. Introduction

Tunneling of particles through a barrier is a pecu-
liar phenomena of quantum mechanics. The question
of the time required by a particle to cross a given
region (or to be reflected from a given region) is a
problem that has aroused much interest recently (see,
e.g. Refs. [1-3] and references therein). The most
direct method to calculate the time during which
a transmitted particle interacts with the barrier is
to utilize the Larmor clock, for electrons [4,5] and
the optical clock, for photons [6,7]. In both cases a
tunneling process in a magnetic field is considered,
but in the first case the magnetic field is perpen-
dicular to the initial direction of the electron and
in the second case the magnetic field is paraliel
to the wavevector of the incident electromagnetic
wave. One can explain the results in terms of a
complex characteristic time t=71| — it [6,8]. For
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photons, the real part is proportional to the Faraday
rotation and the imaginary part to the degree of el-
lipticity. Also the Feynman path-integral technique
gives rise to a complex time [9, 10]. The physical
significance of the complex time has to be discussed
more profoundly. It seems, however, that the ex-
periment itself and the size of the wavepacket play
an important role in understanding [11]. Beside the
traversal and the reflection times, a dwell time can be
defined. The dwell time is a measure for the time a
particle spends within a barrier, irrespectively whether
it is transmitted or reflected. All these characteristic
times, i.e. the traversal time 7, the reflection time t}
and the dwell time 12, can be expressed in terms of
the complex transmission and reflection amplitudes,
t and Ry, respectively [5,12-14]. All these times
are also connected with the density of states (DOS)
[13-15] and appear in a natural way in the scattering
approach to conduction. In a recent series of works
on ac transport in mesoscopic conductors, Biittiker
and co-authors [17, 18] generalized the concept of the
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DOS, and showed that partial DOS can be defined with
full physical significance. These partial DOS are also
related to local characteristic times and their relation
to the Green Function approach was discussed in Ref.
[16].

The dwell time rg’: is the average number of particles
in the barrier divided by the incident flux, i.e.

P = / W (x)? dx. (1)

The integral extends over the barrier length L, and
2k is the incident flux, where we used the units
e=c=h=1, and my = % for the electron mass.
For electrons, y(x) are the steady-state scattering
solutions of the time-independent Schrodinger equa-
tion. The F signs indicate whether the particles incide
in the barrier from the left (—) or from the right (+).
For photons, y+(x) correspond to one of the compo-
nents of the electric or magnetic fields solutions of
the Maxwell’s equations for a plane wave. 12 can
also be written in the form of a partial derivative with
respect to the energy or, equivalently, to the incident
wavevector k =vE [19]:

1
(D)

= nlv(E
nLv( )+4k

X Im{ 5];mj:jF + %(R¢ —Ri)}. (2)
R_ and R, are the reflection amplitudes, and R is
the modulus of both of them, R =|R_| = |[R.|. t is
the transmission amplitude, which is independent of
the incident direction as can be deduced from time-
reversal and current conservation requirements [21].
v(F) is the integrated DOS, which is proportional to
the real component of the traversal time. The two com-
ponents of the traversal time 1 can also be expressed
in terms of the Green function G(x,x;E) of whole
system [13]:
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Egs. (2) and (3) are general expressions, independent
of the model considered. For a symmetric poten-
tial barrier (R_ = R, ) the two dwell times coincide
between themselves and are equal to the real compo-
nent of the traversal time 7.

In this paper we show that it is possible to obtain
exact analytical expressions for the characteristic
times for a complex system, than can incorporate
most of the interesting features of the problem.

2. Theory

In order to obtain the characteristic times for
periodic systems with complex unit cells, we consider
the case where the extent of each individual potential
V(x) is small as compared to any other typical length
of the system. Therefore a generalised Kronig—Penney
(GKP) is discussed, where the unit cell consists of
n arbitrary d-functions. The total potential is of the
form:

Vix)= Zszéx—(XI-i-md)] 4)
/=] m=1

where d is the lattice period, and M is the number of

cells.

First of all, we have to determine the transmission
and the reflection amplitudes, ¢ and Ry, respectively.
This could be done, in principle, using the transfer-
matrix technique. We prefer, however, to use the
characteristic determinant method [20], which is more
convenient for analytical calculations.

The transmission amplitude through a general
structure is inversely proportional to the characteristic
determinant D(£):

t=D"" (5

The determinant D depends on the potential profile
V(x). In the case of N d-potentials of arbitrary strength
V; and at arbitrary points x;, D satisfies the following
recurrence relationship:

Dj = 4;D;—1 — BiDj;—2, (6)

where the index j runs over the different 6 functions
(j = 1,2,...,N). The initial conditions are

i

A, :”51?’ D_, =0, @)
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and we have for j > I:

4, = l+B+ [1 exp(2ika;_,)], (8)
and
Vi
B = —— exp(2ika;_,). 9)
Vi1

Now, let us consider the specific application of the
previous general expressions to our system of periodic
sets of ¢- potentials. The recurrence relation (6) for D;
together with the periodicity of the system allow us
to find an analytical expression for the characteristic
determinant Dy, (M times n is equal to N, the total
number of d-potentials in GKP model) and so for the
inverse of the transmission amplitude:

Dygy = K4 {cos(Mﬁd )+ilm{e %D, } —————Slsrllr(l](\;gcj )}

=t (10)

where f plays the role of quasimomentum for the GKP
and is given by the equation [22]:

cos(fd) = Re{e ¥ D,}, (11)

where D, is the characteristic determinant for one unit
cell. When the modulus of the RHS of Eq. (11) turns
out to be greater than 1, § has to be taken as imagi-
nary. This situation corresponds to a forbidden energy
gap (in an infinite system).

The knowledge of the characteristic determinant al-
lows us to calculate also the reflection amplitudes from
the left and from the right [20] which for the GKP
model are given by:

R — giM—1kd sin(Mpd) P (12)
T Dy, sin(Bd) \ ™)’

(M —1)kd o d (n)
R, = e sn.l(MB ) [y , (13)
Dyn  sin(fd) \ #m)

where #" (r(f)) is the reflection amplitude of a single
unit cell when the particle incides from the left (right).
t, is the transmission amplitude for a single unit cell.
For a finite number #n of J-potentials, ri’ ) and t, have
been calculated in Ref. [20].

3. Two d-functions per unit cell

For the purpose of illustration, we want to present
the results for a diatomic crystal, i.e. for n = 2. The
determinant for a unit cell, D, in this case, becomes:

|+ iV, /2k  iVs)2ke ke

Do =iy keike 14 iv/2k

(14)

Therefore, the equation for the energy spectrum (11)
reads

Vi
2k

Vi Vs
+2 (ﬂ) (2k> sinkasink(d — a),

where a = x, — x is the distance between potentials
V, and V. Substituting ¥; =V, and d =2a into (15)
we can obtain the energy spectrum for the simple
Kronig—Penney model.

The determinant of the whole system is given by
Eq. (10), with the factor Im{e~'*¢D,} being equal to

2\ .
cosﬂd—coskd+( + )smkd

(15)

Im{e *D,} = <;1c + ;/k> coskd — sinkd

I 2R 2
e — 16
42 2k 7 sinkacosk(d —a). (16)

The ratio between the reflection and the transmis-
sion amplitudes, which appear in Egs. (12) and (13),
can also be evaluated using Dys,. We arrive at:

(n)
:(f) — _i(4 F iB)eke, (17)
where
ViV, ViV,
= -+ = 2.1 2 sinka, 18
A <2k+2k>coska+ %2 ksm a (18)
and
i 1\ .
=—=-= ) 19
B (2k 2k)smka (19)
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Furthermore, the transmission coefficient for the
GKP model is given by

.2 -1
sin“(Mpd) }

=D -2 _ 2
I'=Das {l+(|D2 b sin®(pd)

(20)

This equation shows that there are two distinct
cases for which an incident wave is totally trans-
mitted, i.e. T=1. The first case occurs when
sin{Mpd)/sin(fd)=0. It corresponds to destructive
interference between path reflected from different unit
cells. We have

ﬂd:% (n=1,...,M—1). 1)

In the second case, there is no reflected wave from any
individual cell and it corresponds to the condition:

Iy=D|? =1 (22)

In these two resonance cases, the transmission time 1,
becomes extraordinarily large, as we will see later on.

Using all this information, we find for the charac-
teristic times the following expressions:

(d —a) 1 ¢ 1
2k k{ak¢+?/§°°s"’

T, =
x cos(¢p + k(d — a))},
I (10 1
SRR S P -
E 2k{2ak nT —pVReosp

x sin(¢ + k(d — a))},

p_ (@-a) 1[fC,  p¢
T 2k{ak¢iRak‘/’
1
+7(-\/1_i’cos((l>+k(d—a)¢<p)}, (23)
where tan ¢ and tan ¢ are given by
tan(Mpd) B
tan ¢ sn(Bd) tan ¢ y (24)

In a forbidden gap, f becomes imaginary and therefore
Eq. (24) reads

tanh(Mpd)

an ¢ = Q=)

(25)

Near the resonance energy, £y Egs. (23) for the char-
acteristic times reduce to

s _(d—a) I{QMd 0
o _ _

2k 2k | sin(fd) e

—|E — Ep|I'(Ep)cos ¢ cosk(d — a)},
1 .
W = 53 — Eol[(Eo) cos g sink(d — a),

1
rg. =1 F §|E — Eo|T'(Ep) sin ¢ sink(d — a), (26)
where I'(Eq) = (30°T/0E?)\/?

Exactly in the resonance, the dwell times both from
the right and from the left are equal to 7;.

4. Numerical results

We have used Egs. (23) to calculate the char-
acteristic times as a function of the energy of the
incident particle for systems with two J-potentials
per unit cell. For more complex systems, we have
obtained numerically the characteristic determinant
corresponding to the unit cell and then we have used
Egs. (10), (12) and (13) to calculate the character-
istic times. The following graphs show the plots of
these times as a function of energy for electrons and
for various choices of the parameters.

In Fig. 1, we show 1, and 7, as a function of en-
ergy for a simple KP model consisting of five unit
cells with /; = V> = 3 and d = 2. The first allowed
band extends between approximately 1.5 and . In
this range, we observe nine oscillations in 7; and 12,
each one corresponding to a resonance level, in ac-
cordance with Eq. (21). 7, which is proportional to
the DOS, reproduces the characteristic features of the
Kronig-Penney DOS, i.e. 7; presents two van Hove
singularities at the band edges. The strength of these
singularities shows a well known asymmetry [23].
In the forbidden gap, that extends between © and 4
approximately, the DOS becomes drastically small (it
would be zero for an infinite system) and so does 7.
For large energies (not shown in the figure), 7, tends
to the traversal time of a free particle

_(M-1d+a
==

7p is smaller than z; in the allowed bands, and bigger
in the forbidden gaps. 7, is proportional to E/? at

o (27)
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Fig. 1. Two components of the tunneling time 1; and 15, as
a function of incident wavevector, for a Kronig-Penney chain
consisting N = 10 identical potentials. The values of the parameters
are V=3, a=1and d =2a=2.

very low energies. This behaviour of 1, reflects the
fact that the system is open and finite, as was dis-
cussed in the literature [8].

If the J-potential were attractive, we would see sim-
ilar features in the behaviour of 7; and 7, than in the
case of repulsive potentials. The only relevant differ-
ence is that the value of 7, would always be smaller
than 1¢ in the allowed bands, except for energies close
to resonances. 72 shows the same number of reso-
nances as t1;, but the peaks of the resonances are
shifted to lower energies.

In Fig. 2, we represent 7, and t; for an asymmet-
ric GKP model corresponding to the following choice
of the parameters: V=1, V=3, M =5 and d=3.
The separations between allowed bands and forbid-
den gaps are marked by vertical dashed lines. Since
V1 # ¥, there is no resonance level due to reflections
within an individual cell. Only remain the four reso-
nance levels associated with intercell reflection. The
other features are similar to those in the previous case.
We have also represented (dashed curve) the expres-
sion for the resonance time, given by Egs. (26). We
can check that this curve is tangent to the curve cor-
responding to 7; in each resonance, and constitutes a
good approximation for the resonance times.

100

Fig. 2. Two components of the tunneling time 7y and 1,, as a
function of incident wavevector, for a GKP for a diatomic crystal.
The values of the parameters are V=1, V=3, N=10, a=1
and d=3a=3.

200 — i'ﬁ

Fig. 3. The dwell times for a particle incident from the left (dotted
curve) and from the right (dashed curve) for the GPK model. The
value of the parameters are Vy=1, V=2, V3=3, M =5 and
d=3.

In Fig. 3, we show the dwell times for a particle in-
cident from the left (dotted curve) and from the right
(dashed curve) for the GKP model with parameters
=1, V=2, V3=3, M =5 and d =3. These times
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are given by Eq. (1). The difference between the two
dwell times is considerably large in the forbidden gap.
1) is equal to the average value of the two dwell times.
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